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Abstract

Clustering on multilayer networks has been shown to be a
promising approach to enhance the accuracy. Various multi-
layer networks clustering algorithms assume all networks de-
rive from a latent clustering structure, and jointly learn the
compatible and complementary information from different
networks to excavate one shared underlying structure. How-
ever, such an assumption is in conflict with many emerging
real-life applications due to the existence of noisy/irrelevant
networks. To address this issue, we propose Centroid-based
Multilayer Network Clustering (CMNC), a novel approach
which can divide irrelevant relationships into different net-
work groups and uncover the cluster structure in each
group simultaneously. The multilayer networks is represented
within a unified tensor framework for simultaneously captur-
ing multiple types of relationships between a set of entities.
By imposing the rank-(L., L., 1) block term decomposition
with nonnegativity, we are able to have well interpretations on
the multiple clustering results based on graph cut theory. Nu-
merically, we transform this tensor decomposition problem
to an unconstrained optimization, thus can solve it efficiently
under the nonlinear least squares (NLS) framework. Exten-
sive experimental results on synthetic and real-world datasets
show the effectiveness and robustness of our method against
noise and irrelevant data.

1 Introduction

Many real-world networks and complex system are repre-
sented as a set of entities interacting with each other via
multiple types of relationships (Wasserman and Faust 1994;
Kiveli et al. 2014). Since different networks have different
data distributions, it is reasonable to separate them into sev-
eral homogeneous networks to utilize the traditional tools in
graph (Cai et al. 2005). For example, in aeronautical flight
system (Cardillo et al. 2013), different airports (cities) are
connected by flight routes constituted by diverse airlines net-
works; in gene co-expression networks (Ficklin and Feltus
2011), genes often play different roles in different tissues.
From the viewpoint of each individual network, they respec-
tively contain a partial description of the whole system and
might be no sufficient to accomplish a learning task alone
for its incompleteness and noise. Thus, mining on multilayer
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Figure 1: An example of Multilayer Networks: the network
system is comprised by 4 nerworks {A,B,C,D} and 9
nodes. The informative edges are represented in solid line
while noisy edges in dashed line. There are 2 network groups
CNet = {A, B} and C{'¢* = {C, D}, each of which has 2
node clusters with same color: CVede = {CHpede CNode
and C¥ode = {Clode 'ClNode 1 The unobserved node v;
in {B} is not linked by any of other nodes, which raises a
challenge of incompleteness.

networks becomes a crucial task to improve our understand-
ing of the integral system.

As a typical unsupervised learning problem, clustering
aims to find a set of samples closed to each other in the
same cluster and far away from different clusters. It has
been widely studied on both feature-based and graph-based
learning. One of the most adopted feature-based methods
is K-means algorithm (Lloyd 1982), which groups a given
dataset into k clusters by optimizing the cost function of the
total distance from points to cluster centroids. On network
cluster learning, spectral clustering (von Luxburg 2007) has
attracted much attention for the good performance. How-
ever, it also suffers from the sensitiveness, post-processing
and difficulty in interpretation. The symmetric nonnega-
tive matrix factorization (Kuang, Park, and Ding 2012) has
been shown to be a promising approach giving well inter-
pretable and comparative results. It approximates the ad-
jacency matrix X with a nonnegative low-rank factor, i.e.
X ~ HHT, (H > 0), in which clustering assignment of
each data can be easily obtained by finding the largest entry
in the corresponding row of H.



For multilayer networks clustering problem, the key as-
sumption of the existing multilayer networks algorithms is
that all networks share one underlying clustering structure
(Dunlavy, Kolda, and Kegelmeyer 2011; Kolda, Bader, and
Kenny 2005). By leveraging the dependency, coherence and
complementarity of networks, multilayer networks cluster-
ing is able to provide better performance. As an illustration,
in Figure 1, although the two-layer networks { A, B} has dif-
ferent linkages between the same set of nodes, it can learn a
unique clustering structure from the compatible information.
With the complementary information from network { A}, the
unobserved node v; € {B} has higher probability to be
clustered to CH24¢ rather than CR2%. And the distraction
from noisy edges could also be alleviated.

However, this assumption does not always hold in real
life, and a noisy/irrelevant network can dramatically devi-
ate the result from the real one. A widely used solution is to
lower the importance of the noisy networks in learning pro-
cedure, which needs a time-consuming parameter tuning. As
shown in Figure 1, the tuning on importance face a dilemma
when another group of networks {C, D} exists. Moreover,
excluding networks mistakenly might miss an opportunity
to uncover another valuable data distribution covered in the
multilayer networks. Taking the user networks as an exam-
ple of multilayer networks, different functional applications
have their meaningful relationship across users respectively,
such as Yelp suggesting the flavor preference, while Youtube
and Netflix revealing the entertainment inclination. The var-
ious networks could follow completely different underlying
cliques, while the similar functional networks could provide
complementary information like social networks Facebook
and Twitter. That is key knowledge manifested in 4 networks
of Figure 1.

Thus, it is necessary and realistic to obtain a macroscopic
view by grouping networks, and learn a micro-structure by
clustering nodes in each network group. In this paper, we
propose a tensor decomposition based clustering algorithm
CMNC to succeed in clustering networks and nodes simul-
taneously. Our contributions are summarized as follows:

We propose a realistic clustering problem: clustering
intra-layer networks and inter-layer network. A compre-
hensive description of the node can be acquired by the
various clusterings among different networks.

We develop an interpretable and well-performed cluster-
ing model: Centroid-based Multilayer Network Cluster-
ing. Within the tensor framework, the multilayer networks
could be modeled across networks.

CMNC is hyperparameter free, which is a major advan-
tage in unsupervised learning. Numerically, by introduc-
ing 2 operators, the constrained optimization problem can
be efficiently solved in an unconstrained NLS framework.

Extensive experiments are conducted to verify the effec-
tiveness and robustness of the proposed method.

The rest of the paper is organized as follows: A brief
overview of clustering methods is provided, followed by
some preliminaries, the proposed CMNC model and opti-
mization; Then experimental results are presented; Finally
conclusion and future works are discussed.
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2 Related work

Single source data clustering The clustering method can
be mainly classified into three scenarios: feature-based,
graph-based, and hybrid clustering method. The well-known
feature-based clustering methods include the K-means al-
gorithm, hierarchical clustering (Newman 2004) and NMF
(Paatero and Tapper 1994) methods. By transforming to a
similarity graph cut problem, many graph clustering algo-
rithms have been proposed, such as spectral clustering (von
Luxburg 2007), SymNMF (Kuang, Park, and Ding 2012)
and modularity maximization (Newman 2006). For the hy-
brid clustering method, (Cai et al. 2011) proposes an NMF
with graph regularization and (Du, Drake, and Park 2017)
proposes a joint NMF and SymNMF clustering framework .

Multilayer networks clustering The prior research on
node-aligned multilayer networks clustering is mostly pro-
posed for multi-view clustering and multilayer graphs.
These methods can be regarded as the extension of the
single source clustering method, such as the extension of
NMF (Liu et al. 2013a; Li, Jiang, and Zhou 2014), spec-
tral clustering (Kumar and IIT 2011) and modularity max-
imization (Didier, Brun, and Baudot 2015). For instance,
(Tang, Lu, and Dhillon 2009) proposes linked matrix factor-
ization(LMF) to link adjacency matrices by a shared factor
H: X" ~ HA™HT. Similarly, (Dong et al. 2012) pro-
poses an eigen-decomposition method to approximate the
graph Laplacian: L™ ~ PA™) P~ (Kumar, Rai, and
Daume 2011) proposes a joint-spectral clustering with a co-
regularized term. Similarly, (Liu et al. 2013a) proposed a
joint-NMF framework with a common consensus regular-
ization.

Nevertheless, multiple matrices representation interrupt
the analysis of a node across different views, which is non-
negligible in learning both the networks and the clusterings.
To preserve the view factor and take the multilayer net-
works as a whole, tensor representation gives a helpful reso-
lution. The adjacency tensor can preserve the network struc-
ture as well as provide a lot of tensor-decomposition tools
for analysis (Kolda and Bader 2009; Cichocki et al. 2015;
Vervliet, Debals, and Lathauwer 2016; Chen et al. 2018).
(Liu et al. 2013b) develops a tensor-based framework of
multi-view spectral clustering by MLSVD. (Dunlavy, Kolda,
and Kegelmeyer 2011) utilizes the CP decomposition to an-
alyze the multi-link graphs.

However, all these methods assume various networks
share one underlying clustering structure, and it is not easy
for them to accommodate the multi-structure tasks. Re-
cently, some works on multiple structure clustering have
been proposed in a related field multi-domain clustering,
which models the inner- and cross-domain linkages in clus-
ters (Ni et al. 2015). These methods need an additional re-
lationship between networks in the analysis, which is a kind
of guidance on network clustering.

3 Preliminaries

Problem Definition A multilayer networks is defined as
G = (V,E), where V. = {v;}, is a set of n nodes and



& = {E;}X, is a set of relationships. The multilayer net-
works can be separated into N relatively independent of net-
works {G;} |, where G; = (V, E;), and represented by the
adjacency matrices { X; } ;.

Formally, multilayer networks clustering aims to partition
N networks into R network groups CV¢t = {CNet R
where CN¢ = {G,,, - ,G,, }isthe r'" group containing
I, graphs. Meanwhile, it learns node clusterings CNod¢ =
{CNpde, ... CNpde} from the r*" network group, where
CNede is the i node cluster in C}¥¢ and L, is the number

of node clusters in " network cluster. We suppose that the
cluster number R and L, (r = 1,--- , R) are given.

Notation and Preliminaries Tensor is a multidimensional
array. Let X' be an m-order tensor of size [1 X I X+ - - X Ip,.
Rank-one tensor can be written as the outer product of m
vectors, i.e. X = x(Mo-..ox("™) The mode-p matricization
of X is denoted as an I, X (Iy---Ip_1lp41 - - I,,) matrix
X (), which is obtained by the rearrangement of element.
The vectorization of X is denoted as vec(X’). The Frobe-
nius norm || X|| ¢ is the sum of the squares of all its elements
Qivig..i,,: vec(X)Tvec(X). The Khatri-Rao product is de-
noted as ®. The n x n identity matrix is denoted by I,, and
the all-one vector by 1,1 or 1,, for short. Matrix is denoted
as bold uppercase letter A and its elements in lowercase a;;.
A;. and A.; denote the i*" row and j*" column of A.

The multilinear rank-(L,, L,,1) terms decomposition
(Lathauwer 2008), a tensor decomposition format, is ap-
plied as a foundational model in this paper. It writes a third-
order tensor as a sum of R low multilinear rank terms, each
of which can be written as the outer product of a rank-
L, matrix and a vector, i.e. X = Zil(ArB?) o Cp.,
where X € RIX/XK and A, € RI*Lr B, € R/*Lr
and ¢, € RE*1 We denote this form of decomposition as
Mi1(A, B, C), where A is the concatenation of matrix
[A;---Ag] € RI*F with R = Y% | L,, s0 do B and
C'. Solving the exact decomposition is NP-hard (Kolda and
Bader 2009), and it resorts to the approximation as follow:

. _ 2
AI,%],HC X —Mrri(A, B,C)l%. (0

4 The Proposed Method

In this section, we focus on multilayer networks clustering
and describe the proposed model (i.e. CMNC). We start with
model details, followed by discussion and analysis.

Centroid-based Multilayer Networks Clustering

In this problem setting, there exists two aspects of cluster-
ing, the networks and the nodes, both of which are of im-
portance. A good network grouping provides fertile ground
for node clustering, and the better clustering results of each
network group can be found. Inspired by multi-view meth-
ods, the initial idea is to apply a two-step strategy: grouping
networks first and then learn a multi-view task. We explain
the key idea in the following simplified case under the tensor
representation framework.
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The Simplified Case Suppose X,; € R™*"™ is the adja-
cency matrix of the i*" network G; with n nodes. To main-
tain the structure of multilayer networks, NV adjacency ma-
trices are aligned and compacted along the third mode of a
third-order tensor, namely X, . ; = X;,9=1,--- ,N.
With the tensor representation, seeking a partition of the
networks is equivalent to finding a sum of source compo-
nent tensors to restore the adjacency tensor, and networks in
such component share the same underlying node structure.
As aforementioned, the rank-(L,, L., 1) terms decomposi-
tion meets the need of partition, which recovers the com-
ponent tensors by duplicating the basic matrix (ATB,?) by
multiplying different weights. It can also be interpreted as
generating the same structure networks of various weights.
We suppose that each network only belongs to a unique
component tensor, so-called hard clustering on networks.
It is natural to set the component’s weight vectors c, in
Mr1(A, B,C) as an indicator to partition networks into
different component tensors, namely
cr:[oa"'70315"'71307"'30]T (2
pointing out the tied networks with 1 and ignoring the irrel-
evant networks with 0 in the r** component. And each net-
work ought to be indicated only once. Formally, each row
of the concatenated matrix of indicators C' = [cq, - ,CRg]

is the one-hot vector. We can adjust the decomposition with
the indicator C' as follow:

|& — My (A, B,C)|%
CE{O,I}, Clp =1y.

Owing to the nonnegative and symmetric adjacency ma-
trices X ;, we adopt the SymNMF (Kuang, Park, and Ding
2012) as the decomposition format by imposing A, = B,
to the basic matrix. To sum up, we can formulate the objec-
tive function of the simplified case as follow:

1% — Mypi(A, A O)|%
A>0, C€{0,1}7 Clyp =1y.

The networks cluster is obtained by the indicator C
while the nodes cluster is obtained by the largest entry
in the corresponding row of A;. In other word, if k& =
argmax;{(A;);;}, then node v; € CN°* belongs to k"
node cluster: v; € C’%j’de.

The General Case As we can see, the assumption of
hard clustering is too strict to hold in general. A multi-
layer networks system usually evolved out of mixing mul-
tiple weighted network components together. Dropping out
the assumption made before, it is easy to extend the simpli-
fied case to this general case by relaxing the discrete value
constraint to positive continuous value on C, so-called fuzzy
clustering. So we present CMNC as:

|X — Mpi(A A Ol

A>0, C>0, Clgp=1x.
The networks group is also obtained by the largest entry in
the corresponding row of C, namely G; € C¥¢! if and only
if k = argmax;{c;; }. Now, the assignment of the network

cluster can be interpreted as a probability distribution among
all the available structures.

min 3)

s.t.

min
4)

s.t.

min
%)

s.t.



Discussion We claim that CMNC can be seen as a struc-
tured K-means algorithm, and that’s why it is named as
centroid-based. Indeed, the resulting basic network of each
component is the centroid of all the networks contained. The
resulting basic network of each component does guide the
node clustering by setting itself as the target network.

With mode-3 matricization of tensor X — M1, it is
more clear to explicate the essence of CMNC under the ma-
trix framework:

min | X — CS|%

st. A,C>0, Cli=1yp, 6
S = [vec(Ey) - - -vec(ER)]7T, ©
Er:ATA?:7 ’I”Zl,"'7R,

where X (5) € RNVN*x(n*) § ¢ REX("*) Note that the K-
means method has the following matrix form:

min | X - ZM|%

Z € {0,1}, ™

S.t. ZlR = 1N7

where M is the clustering centroid and Z is the cluster in-
dicator. Compared to Eq. (7), Eq. (6) is entirely the matrix
form of K-means with additional constraints on the centroid
matrix S, the vectorized adjacency matrices. In the simpli-
fied case, each network group’s centroid is the means of the
networks in the same cluster, where the objective function
can be formulated as

R
min Y | Xi —[le|| - vee(A; AT)|[,

r=1 i€c,

®)

which is K-means with non-negative positive definite sym-
metric constraint on factor (centroid) matrix. It is also estab-
lished in general case with more complicated explanation
and the stronger ability of expressions.

Since K-means assumes that the data points in each clus-
ter follow a spherical Gaussian distribution, it is also as-
sumed that the networks in the same network group are gen-
erated from an underlying structure with additive noise fol-
lowing the same distribution, which vitalizes centroid net-
work representation in CMNC. We also normalize the adja-
cency matrices (X ; := D_l/QXiD_l/Q, where D is the
degree matrix) to avoid the side effect of the scaling of ad-
jacency matrix in weighted case. This normalization proce-
dure is also important in the proof of graph cut problem.

The difference between the 2 step clustering of K-means
with SymNMF and CMNC is mainly in twofold: on the one
hand, the vectorized adjacency matrix is in an extremely
high dimension which will suffer from the so-called “curse
of dimensionality”; on the other hand, the few network sam-
ples in K-means will be unstable in cluster, while the ten-
sor decomposition iteratively updating the twofold cluster-
ing could mostly avoid the mistake from one shot decision.

Extension for Incomplete Network In multilayer net-
works, that a node disappeared in some layers is a universal
phenomenon. To tackle this issue, we need a so-called obser-
vation tensor W of the same size with ones in the positions
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corresponding to known entries of the dataset and zeros else-
where. That’s to say when node ¢ disappeared in network 7,
then W(4,:, 7) and W(:, 1, j) will be all zeros. Remaining
the constraints unchanged, the objective is:

||W * (X - MLLl(A7 Aa C)) H .

min

Relationship with Graph Cut

In this section, we prove that CMNC is a relaxation of the
normalized multilayer networks cut problem. The normal-
ized graph cut (Shi and Malik 2000) on a network G is to
minimize the loss: Cut(X), and the solution is addressed by:

A=arg min |X—-AA"|? )
AT A=1,A>0

where X is normalized adjacency matrix. Owning to mul-
tiple structures contained multilayer networks clustering,
multiple graph cut patterns {Cut;(G;)}£ | are needed. The
multilayer networks normalized cut is to find the minimum
cut pattern for each network G; in R available cut patterns:

n

s 4=

min
Cut; “
j=

n R
Z Z ciquti (G])

j=1i=1
n R
D IXs =D e AAT |
j=1 i=1
where C' € {0,1} and ¢;; = 1 only when the Cut; is mini-
mum among all Cut on graph G;.

In short, CMNC is the multilayer networks normalized
cut on relaxing the orthogonal constraints on A;.

min{Cut; (G,),--- ,Cutr(G,)}
1

= min

Cut;,C (10)

= min
AT A,=I,A,>0,C

S Optimization
In this section, we develop our constrained problem to an
equivalent unconstrained optimization problem which can
be efficiently solved with nonlinear least squares approach.

Problem Transformation
We remark the problem with new notations:
1
minf(z) = =||F||%,
/(@)= 317 I% o
st. A,C>0, Clg=1y.
where the residual tensor F = MLLl(A, A, C’) — X and
variables z = [vec(A)T;vec(C)T]T.
We introduce two continuously differentiable operators

to avoid the constraints on variables A and C. They are
element-wise square operator [-]? and the row-wise normal-
ization operator|-]"":

[AP=AaxA, [C]"=[Ci/ICilIE,. (12
In this way, we can rewrite problem (11) as follow
. 1
min f(z) = SI1F %, (13)

where F = My1(A,A,C) — X, A = [A]?2,.C
[[C]™]?, the variables A and C are unconstrained and the
intermediate variables A and C satisfy the constraints.



Algorithm 1: Framework of the trust region method.

Algorithm 2: Framework of Dogleg approach.

Input: zg, A > 0,e > 0,k £ 0;

while not Convergent do

Solve problem (15) with Algorithm 2 for pj;
e = f(ka)*f(Zl;JrPZ);

my, (0)7mk (pZ)

Update
20 Vi > 075&“[)2” = Ak,
Ak/4 Y < 0.25, )

Aps1 2
Ay otherwise;

N Yk < Oa
Update zg4+1 = { otherwise;
k2k+1;

Zg,
Zk—"_pZa

bl

end
return z;.

Optimization Framework

Trust Region Method To optimize the unconstrained
nonlinear least squares (NLS) problem (13), we adopt the
trust region method (Wright and Nocedal 2006) which is
presented in Algorithm 1. We iteratively improve an ini-
tial solution zo with additive updates pj, obtained by mini-
mizing a second-order approximation of objective function
based solely on first-order derivatives. Thus, the solution of
NLS problem (13) can be replaced by the solution of a se-
quence of the trust region subproblem of updating step pj.
In detail, given an objective f and a current solution zy,
by linearizing the residual tensor F(z, + p) with m7, the
NLS is approximated by the linear least squares problem:
1
min - mf(p) £ 3[mf (p)°, (14)

where m7 (p) = F(zx) + Jip, mi (p) is kind of
second-order approximation of f(zx) and Jacobian J; =
Ovec(F)/0zT can be computed by chain rule with the dif-
ferentiable operators. Thus the trust region subproblem is:

f

. 1
min m{(p) £ 5| F(z) + Jipl

Pkl < Ak, Ag >0,

15)
s.t.

where Ay is the trust region radius. After solving the ap-
proximated updating step problem within the trust region,
we evaluate the approximation’s validity with vy, the ratio
of actual reduction and predicted reduction. Then the trust
region radius Ay is updated according to how good the ap-
proximation is. The thresholds 0.75 and 0.25 for +y;, are com-
mon settings. Finally, the next iteration point zj;; will be
updated if a descending step is given. Until now, the remain-
ing problem is how to solve the subproblem (15) effectively.

Dogleg Approach In trust region method, the Dogleg al-
gorithm (Wright and Nocedal 2006) is widely adopted to
compute the updating subproblem (15) of search step pj
combining with the Gauss-Newton step kaN and the steep-
est descent step py”. The framework of Dogleg approach
is presented in Algorithm 2. The gradient is g(z) = df /dz.
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Input: Ay > 0, Jacobian J, Residual F(zy,)
Calculate py P = —g(z);
Calculate p{N = —(JF J1) L g(zs);

Solve p;;
P I~ < A,
£ 0 TorpyPR” al[pEP ] > A,

(1 - B)axpy? + BpGN  otherwise,

lpz "]

where Qp = m

and 5 s.t. ||pil| = Ax;
return p;.

After calculating the steepest descent direction pf D and the
Gauss-Newton step pr , we try to find a trade-off between
them within the trust region Ay.

6 Experiment

In this section, we conduct experiments to validate the ro-
bustness and effectiveness of CMNC against noise and mul-
tiple structures. We evaluate CMNC with 6 baseline methods
on synthetic dataset, 20 Newsgroups and Digits dataset.

Comparison Methods

In this part, we introduce the baseline methods in three cat-
egories: pure network clustering, multi-view clustering and
multilayer networks with multiple structures. In particular,

SymNMF (Kuang, Park, and Ding 2012) performs a non-
negative symmetric factorization on each similarity matrix,
which captures the cluster structure in the representation.

SC (von Luxburg 2007) analyzes the graph spectrum and
learns eigenvector-based solutions. We adopted K-means as
the post-processing method.

CTSC (Kumar and IIT 2011) incorporate spectral cluster-
ing with the co-training strategy, which is widely used in
semi-supervised learning.

PairCRSC & CentCRSC (Kumar, Rai, and Daume
2011) adopts co-regularization framework to SC. The
views’ importance hyperparameters are set as suggested.

NONCLUS (Ni et al. 2015) is a multi-domain method
clustering on domains’ network and nodes’ network. We
construct the domain network with a clear clustering struc-
ture, in which edges only exist inside the group of networks.

SymNMEF and SC are pure network clustering method for
evaluating the clustering property of each network. They run
the experiments network by network. CTSC, PairCRSC and
CentCRSC are baseline multi-view methods. They run the
experiments on the network groups separately to evaluate
how rich information the complementary networks contains.
Some of these methods offer an individual result for each
network, while CMNC can learn complementary networks
into a unique result.

Synthetic Dataset

We construct synthetic data of complete multilayer networks
(Comp) and the incomplete one (Incomp). Networks in the



(a) G1 €Comp

(b) Gz €Comp (c) G €Comp

(d) G1 €Incomp

(e) Pixel (f) Histogram

Figure 2: Examples of adjacency matrix, 2a, 2b and 2c are in Comp, 2d is in Incomp, 2e and 2f are in Digits.

Table 1: Average NMI on synthetic networks Comp.

ClNet C«é\/’et ONet
Method eh e s en e er e ra— Go
SymNMFE || 0.7393 06611 || 03846 03763 02659 | 0.1518 0.0703 0.0849 0.0496
SC 0.7537 0.6985 0.4034 0.3589 0.2611 0.1109 0.0602 0.0738 0.0647
CTSC | 09169 09246 || 00329 09293 0.8943 || 04898 04201 0.5644 04823
PairCRSC || 09327 09272 || 09320 09410 0.8728 || 0.3989 03655 04223 0.3764
CentCRSC 0.8970 0.8876 || 0.8868 0.8241 0.8041 0.2675 0.2495 0.2660 0.2259
NoNCLUS || 0.8381 07661 | 07432 07208 06818 | 0.1649 00926 0.1211 0.0793

CMNC 0.9712 0.9684 0.6588

same group are derived from the same structure and the dif-
ference are randomly built. To simulate different structures,
we reshuffle nodes order in adjacency matrix.

Comp: We construct the R = 3 groups of networks
with n = 300 nodes, where each group has 2, 3, 4 net-
works respectively and each underlying structure has L, =
5 nodes’ clusters. For generating networks, we randomly
sample edges with probability o within each cluster, while
with probability 5 from all the network to simulate noisy
edges. The adjacency matrix set to 1 if edge exists, other-
wise 0. Keeping the sparsity around 5%, we sample edges
with ascending signal-noise ratio by tuning pair (c, 8) from
(0.1,0.03), (0.08,0.034) to (0.05,0.04). And the adjacency
matrices before reshuffling are shown in Figure 2.

Incomp: We generate the adjacency tensor with the same
setting as Comp except for the networks number with 5, 6,
7. To simulate the unobserved points in the networks, we
randomly set the corresponding row and column of obser-
vation tensor W to all zeros. The percentage of unobserved
node follows a A/(0.3,0.05) Gaussian distribution.

In experiments, we run 100 times for each method and the
average Normalized Mutual Information(NMI), the higher
the better, is adopted to evaluate the performance. The re-
sults of Comp are shown in Table 1. Compared to the sin-
gle network method, the multi-view, multi-domain and our
method benefit from the complementary networks. The sta-
ble performances in different structures show the robustness
of our method. Moreover, our method is not only produc-
ing a better performance than the other baseline methods but
also capable of automatically grouping the relevant networks
together rather than separate them with the prior knowledge.
The unique clustering assignment in our model gives a clear
instruction in real life application.

The result of Incomp is shown in Table 2. Since the
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Table 2: Average NMI on synthetic networks Incomp.

CNet CNet CNet
Method 1 2 3
etho Gi1~Gs || Ge ~ G || Gia ~ Gig
SymNMF 0.2858 0.1213 0.0378
CMNC 0.9344 0.9292 0.6020

spectral methods can not deal with the incomplete network
and NoNCLUS ignore the unobserved node in its result, we
compare our method to NMF only. With the same set of
parameter, networks losing 30% information extremely de-
crease the performance of NMF from about 0.73 to 0.28.
While our method can still maintain the performance with
more networks, even none of them can provided the com-
plete information of the network’s structure.

20 Newsgroups (20-NG)

We further evaluate the effectiveness of our methods us-
ing 20-Newsgroups dataset (term x document frequency),
which is organized into 20 different topics. The similarity of
two documents is computed by the cosine similarity of their
tf-idf, which reflect the importance of each term to a docu-
ment. We construct the weighted graphs by the 10-nearest-
neighborhood according to the similarity.

We use 12 news group of three categories including
Comp, Rec and Talk. From each category, we generate 5
graphs with 4 contained topics corresponding to 4 clusters in
this group. We randomly sample 200 documents from 4 top-
ics (50 documents from each topic) in each category for each
graph. For any two graphs in the same category, a document
is randomly mapped to documents in the same topic. For the
graphs in the different category, the documents are randomly
mapped together without considering topics. Thus, the adja-



Table 3: Average NMI of 20-NG.

Comp Rec Talk

Method Gi~Gs || Ge ~Gio || Guu ~Gis
SymNMF 0.2251 0.2513 0.2473
SC 0.2680 0.2946 0.3333
CTSC 0.5809 0.6232 0.8219
PairCRSC 0.3440 0.3928 0.4108
CentCRSC 0.3005 0.3401 0.3704
NoNCLUS 0.3675 0.4150 0.3975
CMNC 0.5918 0.6090 0.9039

cency tensor is of size 200 x 200 x 15 containing 3 groups
of network and 4 document clusters for each group.

Table 3 shows the average NMI over 100 trials for the 20-
NG’ adjacency tensor. As shown in the table, our methods
have a better performance than the other methods in Comp
and Talk. On the other side, without prior network knowl-
edge, our methods reach a comparable level to the state-of-
the-art multi-view method, meanwhile group different net-
works precisely. And it is obvious that the multi-view meth-
ods will have a loss when gathering these 15 networks to-
gether. We will prove this statement in the next dataset.

Digits

In plenty of scenarios, dataset can be extracted lots of simi-
larity networks by feature engineering. Without prior knowl-
edge to choosing valuable network, we want to separate
these networks into two groups: one can provide the de-
sired cluster information while the other is noise. To simu-
late this case, we have the digits handwritten dataset with six
hand-picked Feats: Fourier, profile, Karhunen-Love, pixel,
Zernike and morphological. As a helpful feature in image
retrieval application, the histogram (Hist) is also extracted
from the pixel feature. To construct 5-nearest-neighborhood
adjacency matrices, six Feats similarity are measured by
Gaussian distance while the Hist one is by four mea-
surements: histogram correlation, Chi-square statistics, his-
togram intersection and Bhattacharyya distance. These bin-
by-bin distances measurements are defined by different the-
ories and have individual characteristics. The adjacency ma-
trices of pixel and histogram correlation are shown in Figure
2e and 2f. Since the noise networks (Hists) are always in a
high frequency or high rank, we set R = 2 and L = [10, 20]
in which 20 is a random number for grouping the noise ma-
trices only.

Table 4 shows the 10 runs results of the network groups:
hand-picked features (Feats), histogram similarities (Hists)
and their concatenation result (Concat). Compared with
SymNMF and SC, the multi-view methods’ results of Feats
are lower, even though they can learn complementary infor-
mation from 6 Feats network. On the other hand, from the
result of SC, the Hists can still provide some information but
very limited, mostly are hindering the performance of multi-
view methods. On the contrary, separating noise network in
other networks groups and carry out the clustering task on
structured networks, CMNC can fully utilize the comple-
mentary knowledge without distraction. Thus, CMNC out-
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Table 4: Average NMI of different methods on Digit.

Feats Hists Concat
Method G~ G G-~ G
SymNMF 0.8143 0.2989 0.4722
SC 0.8038 0.3008 0.5282
CTSC 0.7837 0.3148 -
PairCRSC 0.8013 0.3009 0.5458
CentCRSC 0.7663 0.2565 0.5037
CMNC 0.8591
T |
L] f e
. <
- e i
(a) Comp (b) 20-NG (c) Digits

Figure 3: Matrix C of CMNC in different dataset.

performs the other baseline methods. More importantly, our
method not only picks out the constructive networks but also
provide an initial result for further processing.

Indicators Analysis

Figure 3 shows the result factor matrix C' obtained in differ-
ent dataset. The clear gap between the correct and the wrong
assignment indicating that our method is able to utilize the
networks in the same category while filter the graphs of ir-
relevant categories. Thus, node clustering task can be done
individually and the significant improvements are promised.

7 Conclusion

In this paper, we propose a novel tensor decomposition
based approach CMNC to solve the multilayer networks
clustering with multiple structures. With the tensor repre-
sentation, CMNC can effectively differentiate irrelevant net-
works into different groups and captures the underlying clus-
terings structure from the correlated networks in each group
simultaneously. We conduct a thorough discussion and anal-
ysis our model theoretically. The effectiveness has been ver-
ified by sound experiments.
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